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INTRODUCT ION

The practical problem of major concern in the field of cavitation is

the prediction of cavitation inception for a prototype from model tests.

The classical theory for scaling vaporous cavitation states that

ai =~pmin 9(1)

C =mi constant (2)

and therefore

ai-p a i-in

where a i and C Pmnare the incipient cavitation number and minimum pressure

coefficient, respectively. The subscripts p and m denote prototype and

model. It is assumed that when scaling from one flow state to another

the form of the flow field and its boundaries remain geometrically and

kinematically similar and bubble dynamic effects are neglected.

Much of the experimental evidence on scaling [see References 1 and 2

for examples] shows that the incipient cavitation number is not a constant

for a particular type of cavitation. In addition there appears to be

a different scaling relationship for each type of cavitation, i.e. tip

vortex, surface, travelling-bubble, etc. Even at model scale, differences

in cavitation inception for a model occur between facilities [3].

There have been several recent results which explain more clearly

why some of the departures occur. The importance of viscous effects,

namely boundary layer transition and laminar separation, and free-stream

nuclei have been pointed out by the extensive work of Arakeri and

Acosta 14] and Gates [5]. These factors which cause departures from the

classical theory are called "scale effects."

Because of these scale effects, some investigations have attempted

to create 'high Reynolds number simulations" at model scale in an attempt

to eliminate the scale effects problem. A recent method used at NSMB [6)
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is to coat the leading edges of model propellers with sand grain roughness

The purpose of this method -is to eliminate laminar separation which occurs

at model scale but not at prototype scale. Some results do give cavitation

patterns at Model scale which approximate prototype patterns.

Another method is to seed the flow facility with cavitation nuclei

to eliminate the scale effects problem. There are several investigators

such as Albrecht and Bjorheden [7] and Kodama et.al. [8] who use this

approach; however, the available resulLs are not conclusive.

The objective of this paper is to present some of the results of

a preliminary investigation into the influence of sand grain roughness

on cavitation inception and "high Reynolds number simulations." Axisym-

metric nodels with a Schiebe headform (Cpi = - 0.75) having diameters
p.

of 203.2 Pam, 50.8 r'm, and 25.4 mm were tested with and without added rough-

ness. The contour of this headform is generated by a combination of a

disk shaped source distribution normal to a uniform flow [0]. Van der

Meulen [10] has investigated the flow around this headform and has verified

that the body does not experience laminar separation.

EXPERM ,TAL PROGRA>M

The experiments were conducted in the 1.21 m water tunnel of the

Applied 'esearch Laboratory located at The Pennsylvania State University.

Both incipient and desinent cavitation data were obtained for the three

Schiebe nosed models having diameters of 203.4 mm, 50.8 mm and 25.4 Wmn.

These data were obtaintd by the following method: 1. the tunnel pressulre

was lowered until cavitation inception occurred, 2. the pressure was

again lowered until developed cavitation appeared, 3. the preSsure was

increased until developed cavitation disappeared, and finally, 4. the
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pressure was again increased until all cavitation disappeared. Thus,

for most of the tests, this procedure yielded cavitation inception for

travelling-bubble cavitation, cavitation inception for attached cavitation,

cavitation desinence for attached cavitation and cavitation desinence

for travelling-bubble cavitation. In addition to the cavitation data

many photographs of the cavitation were also obtained.

Initially, cavitation data were obtained with no added roughness on

the models. Then, a distributed roughness of silicon carbide in a size

range of 15 to 66 microns was glued to the nose of the models. The

roughness was applied to the nose in circular areas of different radii

around the stagnation point. A photograph of the roughness on the 50.8 mm

diameter model is shown in Figure 1.

EX' ERIENTAL RESULTS

Cavitation Characteristic Without Added flcu$hness

Cavitation inception data for the three models are shown in Figure 2

as a functiona of Reynolds number. In this figure the data points are an

average of four tests and the bars indicate the amount of scatter in the

data.

Cavitation inception always occurred near the body surface and slightly

downstream of the C point. Travelling-bubble events occurred very
Pmin

randomly. Inception of the attached cavity was marked by the sudden

appearance of a steady developed cavity.

Both inception aid desnetit data are shown in Figure 3 for the

203.2 mm and 50.8 mm models. A brief analysis of inception data shows

thit in most cases average dcstnent data ire higher than the corresponding

... . ... ..
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inception data. However this difference is within the data scatter for

most cases. Thus, there was not a significant hysteresis effect in these

experiments.

Referring to Figure 2 it is seen that there is a significant scale

effect for the bodies both for travelling-bubble cavitation and for attached

cavitation. On the average, G. for travelling-bubble cavitation decreased1

slightly with increasing velocity for all bodies and increased with model

diameter. The incipient cavitation number for attached cavitation increased

with increasing velocity for all models. For an increase in diameter

from 25.4 mm to 50.8 nmm, a. for the attached cavitation was essentially1

constant for a given velocity. However, a. increased significantly when1

the diameter was increased from 50.8 mm, to 203.2 mrm. However, as reported

in Billet and Boll [2] for travelling-bubble cavitation on NACA 0010 hydro-

foils, the velocity scale effect was the same as that observed for travelling-

bubble cavitation on the Schiebe headforms whereas there was no size effect.

As discUse.ed in the introduction, free stream nuclei can be important

in cavitation scaling. A crude method of reducing the number of free

stream nuclei is to de-gon the w:ater. This was done for one set of tests

with the 203.2 mm model1. Inception data are shown in Figure 4 for an air

content of 7.1 ppm and 3.2 ppm*. Reducing the gas content from 7.1 ppm to

3.2 ppm caused a reduction in (7. over the entire velocity range for both
1

travel.ling-bubble cavitation and attached cavitation. Powever, the amount

of redction in c i for the travel ling-btb')Ie cavitation was considerably

greater than that for the attached cavitics.

*Air contents are expressed in moles of air per million moles of water (ppm).
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Cavitation Data With Added Roughness on the 25.4 mm and 50.8 Pim Models

Incipient and desinent cavitation data were obtained with a distributed

roughness added to the nose of the models. Roughness was added to the

25.4 nim and 50.8 mm diameter models upstream of the C position. Two
Pmin

sizes of roughness were used having mein diameters of 30 jim and 66 1=o.

In all cases, silicon carbide grit wan glued to the nose to form a disk

area of radius R of distributed roughness.

Many tests were conducted in which the normalized radius (R/0 m ) of

distributed roughness was varied from 0.5 to 0.7 where R denotes mode]

radius. In some cases the cavitation was observed to be attached to

the roughness which caused a large change in cavitation index and in

other cases no change in cavitation index was observed.

There are many., conclusions that can be made from the tests with added

roughness. Some of these are very notew!orthy and these data will be

presentpd and discussed.

First of all an additional type of cavitation called fixed-patch

cavitation was observed. This is sLpiply a patch of cavitation attached

to the surface near the C point on the body. In most of the cases
Pmin

this patch is downstream of the C point and does not appear to be
Pmin

attached to roughne-ss elements. Holl and Carroll [11] have previously

discussed fixed-patch cavitation which was observed on axisyrmetric headforms.

The 60 l!m grit at R/ = 0.5 had no influence on bubble or attachd

cavitation for either body i.,hen comp-ired to the cavitation data without
added roughness. Using 30 jim grit at R/R = 0.7 gave the most interesting;

re.;ults. These data are shown in Figure 5.
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On the average,, the Incipient cavitation nuIMber for t ravull ing-bubbi e

cayvitat ion for the 25.4 wmr and 50.8 rim no.-ies i.f th added roughness was

higlher thana1 a ~il.r la ta for ho tb bodies wi thou t added roctl inca a. Also,

the fixed patch cavi tation for both bodies occurred at ighecr values of

U. thn.i (did the at- tachied cavitation for the bodies without ad,',od roti-hne7,!-.

D T S C US ()LON

The previous comiments hiave. been written with respect to the docu-

mnentation of the experimental reSUlts. Let us discuss these results with

emphis onI scaling.

Describing a poss.-ible sciling relationship with r.ode siaco for the

data shot..n in Figuire 2 is di fficult. Attached caity\ cavitationi varied

significantly withi m.odel s:ebu~t no corre~lation is obvious. llowever,

cf. for travelling-bubble cavitation was alw,-ays greater than that for

attached caitic5- on, fldC the -avcra,-, Jnfcr(o ascd t. 1th incWreasi ug si7,e.

Conslidcraole. effort has beeni rnidc in thapas to formul ato a dimens ion-

lecss p.a -iumeor or parmete rs whichi wsul d sea le t rv 1 1 n-nb 1  cavitation.

Schich e [L12] has de-veloped a rc ~ll~ prahfor sc ili g using a pa .ra-

met er wh-,ichI involIves thIeI numberI of eiv i tat oii evonts pc i ui t thonorwa I zeod

by the free st ream voluemi Lv , the riodei diar.e t or square'?Cl aIid the num!)er

of nuLcle'i par unvit voluime. As diIuae y Gatezs aniw' le11t [13], thnis

approach doos give a dec reaso in i nceptLio(n indlx for ;e...ains" model

size for gebhicho bodies. Fb aderes s aon? inl IN, caused b~y a reduction

in capture orca as the vodel1. size tlecreases.

Nolet us, addrmess th cliqes;tion: 1.1ha t can rou.ghue ss- do to th is

pI'oo:is: to make the el u indlependen t of rm.-det r ] Anothier quost ion

' li pa ral e is; the above is: C'ain rogiaa; ik nV it at ion Ince ption

i ndc-piand-en of rraido t' ai s?
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A co0noari50f be~tween cavitation inlceptionl dataj for the 203.2 mm

miodel and, the roughened 50.8 mnn model is shown In rigure 6. It is seen

that the average of the travel ling-buhb] e inception data is; similar

between the 203.2 mr. model and the 50.8 imn model with added roughness.

In this case the roughIness was not observed to cavitate directly. Thus

the roughne10.ss formulation developed by Hall [14] and suimmarized in Arndt

et.ail. [15] cannot be directly applied.

A po!ssible nechanism is found by rcfecring to the previous discussion

of scaling( travel-ling-bub~ble Cavitation. The roughness could generate

micro-bubleD)Is which would changeo the nuclei distribution for the model

and thus offset Lhe problum of: reduced capture area at miodel scale. If

this is po;ssi idc,, the location and size of the roughness is very critical.

In add itinn, the ri cro-bulb Ie generalien for the roughness wauld be very

qensi tive to bound.-ry layer conditions and hence .,ould vot be very useful

over a large volocity range for the model. In addit ion, different rough-

11055C5 would be required for- (11Fforent scales.

SU'1:ARY AND CONCLITSTNS

The Train oh~eccive of this paper is to present somie experimental

ren;util t of a preli;hiinary invest iga t ion of the influence of sand grain

roughn~ess on cowl tat icr scaling. To do this, a nonsepariting- test miodel

wans Chosen wii ch evihib iLs inns i travelling-bubble cavitation at Inception.

7111ee modo]ls havings di ar's'ters of 25.4 P-mi, 50.8 rim, and 203.2 rim were tested.

Roghule!s 1was ad3 to the 50.8~ mr "mode'l" in an effort to obtain cavi tat ion

fnc'ptlon numbers typ [cal of the 203. 2 mmi "prototype'' wi tholit added rougfhneoss.
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The results show that it is possible to use a distributed roughness

to increa.se Ohw cavi1tation inception indlex on the "mnodel" to the level

experienced by the "prototypo" at hiighier Reynolds numbers. lo-wever, there

are baic problems, associatced withL~ this method:

(1) We caimot necessarily duplicate the same type of cavitation from

modlel to prototype. In these experimlents, the travelling-bubble

cavitation was essentially the same hut the attached cavitation was

in tihe formi of a patch on the model and was a developed cavity on

the prototype.

(2) There does not appear to be a rational way to select the "proper"

roughiness since the cavitation occurs do-wnstream front the roughness

which suggests that the techniques of Arndt, Hull, Bohin, and Bechtel

(151 arc not, applicable.

(3) We can miatch o.i of the model and prototype by employing a trial andl

error prOCess of adding roughness hut to do this we ust know 1

of the pmrototype.

The mechaism hy whichi the roughness indirectly Increases the cavi-

tation index for inception is not fully understood; howeover, it is suspected

that the rom1IgimSS produces mnicro-bubbles. T'he muchanics by which fixed

patch cavitation is produced downstream of the roughness Is also not under-

stood; however, the roughiness MuSt change the structuire of the boundary

layer. This is only a prelimitnry investigation Into the use of ron-hutess.

There are manly que, tioms %which Trust 1,e answered before rcighness induced

cavitation ir, iineerstoo'h.
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SCHIEBE NOSES WITHOUT ROUGHNESS
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z
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II a a a i i i I f i i
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REYNOLDS NUMBER,(V- D)

,'igur, 2. Cavitation Tnception for Three Models
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INCEPTION DESINENCE

0 50.8 mm DIAMETER
o0.7- 0 A 203.2 mm DIAMETER

o 0.6

ATTACHED CAVITY
INCEPTION DESINENCE

0.5- 6) 0 50.8 mm DIA
o c , 203.2 mm DIA

I.,-0 
= 7.1 ppm0.4 -]0

0.3
L g I. I i I i i I I I I I I I I

105  2 4 6 8 10 20 40 60 80 100

REYNOLDS NUMBER, (..)

Figure 3. Comparison of Inception and Desinence for the

203.2 nm and 50.8 mm Models
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0.8 203.2 mm SCHIEBE MODEL WITHOUT ROUGHNESS

TRAVELLING-BUBBLE CAVITATION
o 7.1 ppm

0.7 e 3.2 ppm
w ATTACHED CAVITY

0 7.1 ppm

0.6- 3.2 ppm

< 0.5

a-

0.4

0.3
I I I i 1 I I i I~ I I I I t 1

0 2 4 6 8 10 20 40 60 80 100

REYNOLDS NUMBER, V_*)

Figure 4. The influence of Air Content on Inception for the

203.2 Model
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I I I 1 I I I I I I l i l y

0.8 SCHIEBE MODELS WITH AND WITHOUT ADDED ROUGHNESS

TRAVELLING BUBBLE
e 25.4 mm

0.7 o 50.8 mm

. FIXED PATCH
TRAVELLING BUBBLE .25.4mm

0.6 WITHOUT ROUGHNESS , 50.8 mm

o -- SOLID LINES REPRESENT
AVERAGE DATA WITHOUT

I 0. ROUGHNESS'.5 , ,ADDED ROUGHNESS
30pm, R/Rm 0.7

-- _," ," " '-D =50.8 mmz 0.4- D=25.4 mmD 8

/ " ._ J : 7.1 ppm

0.3- ATTACHED CAVITY

WITHOUT ROUGHNESS
I I I I I I I I I L !

10 5  2 4 6 8 10 20 40 60 80 100

REYNOLDS NUMBER,

Figure 5. Cavitation Inception Data for the 25.4 mm and 5018 mm Models
with and without Added Roughness
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II ' '! I" i ir' I I I I I I I I

0.8 SCHIEBE MODELS SCALING WITH ROUGHNESS

TRAVELLING
BUBBLE

0

- 0.7

0.6-o-

0.5 FIXED
PATCH

ATTACHED
a- CAVITY
E 0.4

OPEN SYMBOLS: 203.2 mm MODEL
SOLID SYMBOLS: 50.8 mm MODEL

WITH ROUGHNESS: a = 7.1 ppm
0.3 30 Pm, R IR = 0.7

S I I I1 I 1 ii 1 .. I ! I t I l t

105 2 4 6 8 10 20 40 60 80 100

REYNOLDS NUMBER,

Figure 6. Comparison of Cavitation Inception Data for the 203.2 mm Model
with the 50.8 mm Model with Added Roughness
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